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Rare events: examples 

Medicine: 

• Side effects of treatment   1/1000s to fairly common 

• Hospital-acquired infections  9.8/1000 pd 

• Epidemiologic studies of rare diseases 1/1000 to 1/200,000 

Engineering: 

• Rare failures of systems   0.1-1/year   

Economy: 

• E-commerce click rates   1-2/1000 impressions 

Political science: 

• Wars, election surprises, vetos  1/dozens to 1/1000s 

… 
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Problems with rare events 

• ‚Big‘ studies needed to observe enough events 

• Difficult to attribute events to risk factors 

 

 

• Low absolute number of events 

• Low event rate 

CeMSIIS-Section for Clinical Biometrics 

Georg Heinze – Prediction and explanation with rare events 

3 



Our interest 

• Statistical models   

• for prediction of binary outcomes 

• should be interpretable,  

     i.e., ‚betas‘ should have a meaning  

      explanatory models based on logistic regression 

 

Pr 𝑌 = 1 = 𝜋 = [1 + exp −𝑋𝛽 ]−1
 

 

• How well can we estimate 𝛽  if events (𝑦𝑖 = 1) are rare? 

• How well can we predict 𝑌 if 𝜋 is not ‚average‘? 

 

CeMSIIS-Section for Clinical Biometrics 

Georg Heinze – Prediction and explanation with rare events 

4 



 

 

 

 

 

 

 

Not much gain! 

Rare event problems… 
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Logistic regression with 5 variables: 

• estimates are unstable (large MSE) because of few events  

•                                              removing some ‚non-events‘ does not affect precision 



More rare events problems: separation 

Georg Heinze & Rok Blagus, October 2018 
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• From Mansournia et al, AmJEpi 2018: 

 

 

 

 

 

 

• Odds ratio? 

University of Ljubljana, IBMI 



Separation and the ‚monotone likelihood‘ 

Georg Heinze & Rok Blagus, October 2018 
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Mansournia et al,  

AmJEpi 2018 

University of Ljubljana, IBMI 
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Van Smeden et al,  

BMC Med Res Meth 

2016 

University of Ljubljana, IBMI 
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Mansournia et al,  

AmJEpi 2018 

University of Ljubljana, IBMI 



Why a solution is needed 

Georg Heinze & Rok Blagus, October 2018 
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• It is not assumed that event ‚cannot occur‘ in one of the categories of X 

• We just need a bigger sample size  

• Hence, the seemingly ∞ odds ratio is a small sample problem 

• Normal approximation completely fails: Wald CI for 𝛽 diverges to −∞, +∞ 

(this could be seen as a sign of variance inflation) 

• Better are profile likelihood CI, but anticonservative (Heinze, StatMed 2006) 

 

• Methods to correct the higher-level problem of small samples may also work to 

tackle separation issue 

University of Ljubljana, IBMI 



Penalized likelihood regression 

log𝐿∗ 𝛽 = log 𝐿 𝛽 + 𝐴(𝛽) 

 

Imposes priors on model coefficients, e.g. 

• 𝐴 𝛽 = −𝜆∑𝛽2
          (ridge: normal prior) 

• 𝐴 𝛽 = −𝜆∑|𝛽|                 (LASSO: double exponential) 

• 𝐴 𝛽 =
1

2
log det (𝐼 𝛽 )    (Firth-type: Jeffreys prior) 

in order to  

• avoid extreme estimates and stabilize variance (ridge) 

• perform variable selection (LASSO) 

• correct small-sample bias in 𝛽 (Firth-type) 
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Firth‘s penalization for logistic regression 
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In exponential family models with canonical parametrization  the Firth-type 

penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det( 𝐼 𝛽 )1/2,  

where 𝐼 𝛽  is the Fisher information matrix and 𝐿 𝛽  is the likelihood. 

 

Firth-type penalization  

• removes the first-order bias of the ML-estimates of 𝛽, 

• is bias-preventive rather than corrective,  

• is available in Software packages such as SAS, R, Stata… 

 



Firth‘s penalization for logistic regression 
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In exponential family models with canonical parametrization  the Firth-type 

penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det( 𝐼 𝛽 )1/2,  

where 𝐼 𝛽  is the Fisher information matrix and 𝐿 𝛽  is the likelihood. 

 

Firth-type penalization  

• removes the first-order bias of the ML-estimates of 𝛽, 

• is bias-preventive rather than corrective,  

• is available in Software packages such as SAS, R, Stata… 

 

Jeffreys 

invariant prior 



Firth‘s penalization for logistic regression 
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In logistic regression, the penalized likelihood is given by  

𝐿∗ 𝛽 = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)1/2
, with 

 

𝑊 = diag expit Xi𝛽 (1 − expit Xi𝛽 )  

= diag(𝜋𝑖 1 − 𝜋𝑖 ) . 

 

• Firth-type estimates always exist.  

𝑊 is maximised at 𝜋𝑖 =
1

2
, i.e. at 𝛽 = 0, thus 

• predictions are usually pulled towards 
1

2
, 

• coefficients towards zero. 

 



Firth‘s penalization for logistic regression 
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Bias reduction also leads to reduction in MSE: 

• van Smeden, 2016: ‚By applying Firth’s correction, the problems associated with 

   separation can be avoided.’ 

   ‘Our simulation study shows that this performance at low  

   values of EPV can be significantly improved using Firth’s  

   correction.‘ 

   ‚We further show that Firth’s correction can be used to  

   improve the accuracy of regression coefficients and alleviate 

   the problems associated with separation.‘  

• Rainey, 2017:  Simulation study of LogReg for political science 

   ‚Firth‘s methods dominates ML in bias and MSE‘ 
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Firth‘s penalization for logistic regression 
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So, let‘s forget about maximum likelihood for logistic regression and use Firth‘s 

method throughout? 

 

 



Firth‘s penalization for logistic regression 
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So, let‘s forget about maximum likelihood for logistic regression and use Firth‘s 

method throughout? 

 

Well, but … 

 

the predictions get biased 

• Elgmati et al, 2015 

… and anti-shrinkage could occasionally arise: 

• Greenland and Mansournia, 2015 

 



Firth‘s Logistic regression 
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 For logistic regression with one binary regressor*,      

Firth’s bias correction amounts to adding 1/2 to each cell: 

 

 

 

 

 

 

 

 

* Generally: for saturated models   

A B 

Y=0 44 4 

Y=1 1 1 

Firth-type 

penalization 

original augmented 

event rate =
2

50
= 0.04 

OR
BvsA

 = 11 

event rate =
3

52
~0.058 

OR
BvsA

 = 9.89 

av. pred. prob. = 0.054 

A B 

0 44.5 4.5 

1 1.5 1.5 



Correcting the bias in 𝜋 : FLIC 
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Firth’s Logistic regression with Intercept Correction: 

1. Fit a Firth logistic regression model 

2. Modify the estimated intercept 𝛽 0 such that 𝜋  = 𝑦 . 

 

unbiased pred. probabilities 

effect estimates 𝛽 1, … , 𝛽 𝑘 are the same as with original Firth method 

 

Puhr et al, 2017 



Example of Greenland 2010 

 

 

A B 

Y=0 315 5 320 

Y=1 31 1 32 

346 6 352 

Greenland, AmStat 2010 
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event rate =
32

352
= 0.091    event rate=

33

354
= 0.093  

  

OR
BvsA

 = 2.03     OR
BvsA

 = 2.73    

A B 

Y=0 315.5 5.5 321 

Y=1 31.5 1.5 33 

346.5 6.5 354 

original augmented 



Greenland example: likelihood, prior, posterior 
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Bayesian non-collapsibility: 
anti-shrinkage from penalization 

• Prior and likelihood modes do not ‚collapse‘:  

posterior mode exceeds both 

• The ‚shrunken‘ estimate  

is larger than ML estimate 

 

• How can that happen??? 
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An even more extreme example  
from Greenland 2010 

• 2x2 table 

 

 

 

 

• Here we immediately see that the odds ratio = 1 (𝛽1 = 0) 

 

• But the estimate from augmented data: odds ratio = 1.26  

(try it out!) 

 

X=0 X=1 

Y=0 25 5 30 

Y=1 5 1 6 

30 6 36 

Greenland, AmStat 2010 
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Reason for anti-shrinkage 

• We look at the association of X and Y 

 

• We could treat the source of data as a ‚ghost factor‘ G 

• G=0 for original table 

• G=1 for pseudo data 

 

• We ignore that the conditional association of X and Y  

is confounded by G 
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Example of Greenland 2010 revisited 

 

 

A B 

Y=0 315 5 320 

Y=1 31 1 32 

346 6 352 
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A B 

Y=0 315.5 5.5 321 

Y=1 31.5 1.5 33 

347 7 352 

original augmented 

To overcome both the overestimation and anti-shrinkage problems: 

 

• We propose to adjust for the confounding by including the ‚ghost factor‘ G 

in a logistic regression model 



FLAC: Firth‘s Logistic regression with Added Covariate 
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original 

G=0 

Split the augmented data into original and pseudo data:  

pseudo 

G=1 augmented 

Define Firth type Logistic regression with Additional 

Covariate as an analysis including the ghost factor as 

added covariate: 

 

OR
BvsA

 =1.84 

 

A B 

0 315.5 5.5 

1 31.5 1.5 

A B 

0 315 5 

1 31 1 

A B 

0 0.5 0.5 

1 0.5 0.5 

+ 

Ghost factor 

OR
BvsA

 =2.03     



FLAC: Firth‘s Logistic regression with Added Covariate 
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Beyond 2x2 tables: 

Firth-type penalization can be obtained by solving modified score  equations: 

 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+ ℎ𝑖

1

2
− 𝜋𝑖 𝑥𝑖𝑟 = 0;     𝑟 = 0, … , 𝑝 

where the ℎ𝑖’s are the diagonal elements of the hat matrix 𝐻 = 𝑊
1

2𝑋 𝑋′𝑊𝑋 −1𝑋𝑊1/2
  

They are equivalent to: 

 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  ℎ𝑖

1

2
− 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖

= 

=  𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  
ℎ𝑖

2
(𝑦𝑖 − 𝜋𝑖)

𝑁

𝑖=1

+  
ℎ𝑖

2
(1 − 𝑦𝑖 − 𝜋𝑖)

𝑁

𝑖=1

= 0 

 

  

 



FLAC: Firth‘s Logistic regression with Added Covariate 
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• A closer inspection yields: 

 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  
ℎ𝑖

2
𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  
ℎ𝑖

2
1 − 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

= 0 

 

The original data 

Original data, 

weighted by ℎ𝑖/2 

Data with reversed outcome, 

weighted by ℎ𝑖/2 

Pseudo data 



FLAC: Firth‘s Logistic regression with Added Covariate 
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• A closer inspection yields: 

 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  
ℎ𝑖

2
𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

+  
ℎ𝑖

2
1 − 𝑦𝑖 − 𝜋𝑖 𝑥𝑖𝑟

𝑁

𝑖=1

= 0 

 

The original data 

Original data, 

weighted by ℎ𝑖/2 

Data with reversed outcome, 

weighted by ℎ𝑖/2 

Pseudo data 

Ghost factor:                    G=0                                               G=1 

(‚Added covariate‘) 



FLAC: Firth‘s Logistic regression with Added Covariate 
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FLAC estimates can be obtained by the following steps: 

1) Define an indicator variable 𝐺 discriminating  

between original data (𝐺 = 0) and pseudo data (𝐺 = 1). 

2) Apply ML on the augmented data including the indicator 𝐺 in the 

model.   

 

           unbiased pred. probabilities 

 
Puhr et al, 2017 



Simulation study: the set-up 

We investigated the performance of FLIC and FLAC,  

simulating 1000 data sets for 45 scenarios with: 

• 500, 1000 or 1400 observations, 

• event rates of 1%, 2%, 5% or 10% 

• 10 covariables (6 cat., 4 cont.),  

see Binder et al., 2013 

• none, moderate and strong effects  

of positive and mixed signs 

Main evaluation criteria: 

bias and RMSE of predictions and effect estimates 
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Other methods for accurate prediction 

In our simulation study, we compared FLIC and FLAC to the following methods: 

• weakened Firth-type penalization (Elgmati 2015),  

with 𝐿 𝛽 ∗ = 𝐿 𝛽 det(𝑋𝑡𝑊𝑋)𝜏, 𝜏 = 0.1,    WF 

• ridge regression,       RR 

• penalization by log-F(1,1) priors,     logF 

• penalization by Cauchy priors with scale parameter=2.5.  Cauchy 
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logF(1,1) prior (Greenland and Mansournia, 2015) 
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• No shrinkage for the intercept, no rescaling of the variables 

Penalizing by log-F(1,1) prior gives 𝐿 𝛽 ∗ = 𝐿 𝛽 ⋅ ∏ 
𝑒

𝛽𝑗
2

1+𝑒
𝛽𝑗

. 

This amounts to the following modification of the data set: 

x1 x2 y 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

x1 x2 y 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

0 1 0 0 

0 1 0 1 

0 0 1 0 

0 0 1 1 

each assigned a weight of ½  

each assigned a weight of 1  



Cauchy priors 

Cauchy priors (scale=2.5) have heavier tails than log-F(1,1)-priors: 

 

We follow Gelman 2008: 

• all variables are centered,  

• binary variables are coded to have a range of 1, 

• all other variables are scaled to have standard deviation 0.5, 

• the intercept is penalized by Cauchy(0,10).  

This is implemented in the function bayesglm in the R-package arm. 
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Simulation results 
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• Bias of 𝛽 : clear winner is Firth/FLIC method 

FLAC, logF, Cauchy: slight bias towards 0 

• RMSE of 𝛽 :  

equal effect sizes:   ridge the winner 

unequal effect sizes:  very good performance of FLAC and Cauchy 

    closely followed by logF(1,1) 

 

• Calibration of 𝜋 :  

• often FLAC the winner  

• considerable instability of ridge 

 

 



Predictions:        bias                              RMSE 
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‚scaled‘ = in multiples of binomial error 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Predictions:        bias                              RMSE 
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High-risk subject 

 (90th percentile) 



Comparison 

FLAC 

• No tuning parameter 

• Transformation-invariant 

• Often best MSE, calibration 

 

• Standardization is standard 

• Tuning parameter  

– no confidence intervals 

• Not transformation-invariant 

• Performance decreases  

if effects are very different 

 

Bayesian methods (Cauchy, logF) 

• Cauchy: in-built standardization (bayesglm),  

      no tuning parameter 

• logF(m,m): choose m by ’95% prior region’ for 

parameter of interest 

m=1 for wide prior, m=2 less vague 

• (in principle, m could be tuned as in ridge) 

• logF: easily implemented 

• Cauchy and logF are not transformation-invariant 
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Ridge 



Comparison 

FLAC 

• No tuning parameter 

• Transformation-invariant 

• Often best MSE, calibration 

 

• Standardization is standard 

• Tuning parameter  

– no confidence intervals 

• Not transformation-invariant 

• Performance decreases  

if effects are very different 

 

Bayesian methods (Cauchy, logF) 

• Cauchy: in-built standardization (bayesglm),  

      no tuning parameter 

• logF(m,m): choose m by ’95% prior region’ for 

parameter of interest 

m=1 for wide prior, m=2 less vague 

• (in principle, m could be tuned as in ridge) 

• logF: easily implemented 

• Cauchy and logF are not transformation-invariant 
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Ridge 
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Confidence intervals 
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Important: 

• With penalized (=shrinkage) methods one cannot achieve nominal coverage over 

all possible parameter values 

• But one can achieve nominal coverage averaging over the implicit prior 

 

• Prior – penalty correspondence can be a-priori established  

if there is no tuning parameter 

• Important to use profile penalized likelihood method 

• Wald method (𝛽 ± 1.96 𝑆𝐸) depends on unbiasedness of estimate 

Gustafson&Greenland, StatScience 2009 
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Conclusion 
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We recommend FLAC for: 

• Achieving unbiased predictions 

• Good performance 

• Invariance to transformations or coding 

• Cannot be ‘outsmarted’ by creative coding 
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Simulating the example of Greenland 

• We should distinguish BNC in a single data set from a systematic increase 

in bias of a method  (in simulations) 

 

 

 

• Simulation of the example: 

• Fixed groups x=0 and x=1, P(Y=1|X) as observed in example 

• True log OR=0.709 

X=0 X=1 

Y=0 315 5 320 

Y=1 31 1 32 

346 6 352 
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Simulating the example of Greenland 

• True value: log OR = 0.709 
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Parameter ML Jeffreys-Firth 

Bias 𝛽1 * +18% 

RMSE 𝛽1 * 0.86 

Bayesian non-

collapsibility 𝜷𝟏 

63.7% 

* Separation causes 𝛽1 to be undefined (−∞) in 31.7% of the cases 



Simulating the example of Greenland 

• To overcome Bayesian non-collapsibility,  

Greenland and Mansournia (2015)  

proposed not to impose a prior on the intercept 

 

• They suggest a log-F(1,1) prior for all other regression coefficients 

 

• The method can be used with conventional frequentist software 

because it uses a data-augmentation prior  

 

 

 

Greenland and Mansournia, StatMed 2015 
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logF(1,1) prior (Greenland and Mansournia, 2015) 
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• No shrinkage for the intercept, no rescaling of the variables 

Penalizing by log-F(1,1) prior gives 𝐿 𝛽 ∗ = 𝐿 𝛽 ⋅ ∏ 
𝑒

𝛽𝑗
2

1+𝑒
𝛽𝑗

. 

This amounts to the following modification of the data set: 

x1 x2 y 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

x1 x2 y 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

1 ∗ ∗ ∗ 

0 1 0 0 

0 1 0 1 

0 0 1 0 

0 0 1 1 

each assigned a weight of ½  

each assigned a weight of 1  



Simulating the example of Greenland 

• Re-running the simulation with the log-F(1,1) method yields: 

CeMSIIS-Section for Clinical Biometrics 

Georg Heinze – Prediction and explanation with rare events 

60 

Parameter ML Jeffreys-Firth logF(1,1) 

Bias 𝛽1 * +18% 

RMSE 𝛽1 * 0.86 

Bayesian non-

collapsibility 𝜷𝟏 

63.7% 0% 

* Separation causes 𝛽1 be undefined (−∞) in 31.7% of the cases 



Simulating the example of Greenland 

• Re-running the simulation with the log-F(1,1) method yields: 

CeMSIIS-Section for Clinical Biometrics 

Georg Heinze – Prediction and explanation with rare events 

61 

Parameter ML Jeffreys-Firth logF(1,1) 

Bias 𝛽1 * +18% -52% 

RMSE 𝛽1 * 0.86 1.05 

Bayesian non-

collapsibility 𝜷𝟏 

63.7% 0% 

* Separation causes 𝛽1 be undefined (−∞) in 31.7% of the cases 



Other, more subtle occurrences  
of Bayesian non-collapsibility 

• Ridge regression: normal prior around 0 

• usually implies bias towards zero, 

• But:  

• With correlated predictors with different effect sizes,  

for some predictors the bias can be away from zero 
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Simulation of bivariable log reg models 

• 𝑋1, 𝑋2~Bin(0.5) with correlation 𝑟 = 0.8, 𝑛 = 50 

• 𝛽1 = 1.5, 𝛽2 = 0.1, ridge parameter 𝜆 optimized by cross-validation 
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Parameter ML Ridge (CV 𝝀) Log-

F(1,1) 

Jeffreys-

Firth 

Bias 𝛽1 +40% (+9%*) -26% -2.5% +1.2% 

RMSE 𝛽1 3.04 (1.02*) 1.01 0.73 0.79 

Bias 𝛽2 -451% (+16%*) +48% +77% +16% 

RMSE 𝛽2 2.95 (0.81*) 0.73 0.68 0.76 

Bayesian non-

collapsibility 𝜷𝟐 

25% 28% 23% 

*excluding 2.7% separated samples 



Anti-shrinkage from penalization? 

Bayesian non-collapsibility/anti-shrinkage 

• can be avoided in univariable models,  

but no general rule to avoid it in multivariable models 

• Likelihood penalization can often decrease RMSE  

(even with occasional anti-shrinkage) 

• Likelihood penalization ≠ guaranteed shrinkage 
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